Abstract

This paper presents a radio frequency (RF) triple pole triple throw 3P3T cross antenna switch for cellular mobile devices. The negative biasing scheme was applied to improve the power-handling capability and linearity of the switch by increasing the maximum tolerable voltage drop across the drain and source and reverse biasing the parasitic junction diodes. To avoid signal reflection through the antenna in off-state, all the antenna ports were equipped with 50-ohm termination to provide the pull-down path. Considering the simultaneous operation of antenna ports in different switch cases, the presented T-type pull-down path demonstrated improvement of isolation by over 15 dB. Using stacked switches, the 3P3T handled the input power level of over 35 dBm. The chip was manufactured in 65 nm complementary metal oxide semiconductor (CMOS) silicon on insulator (SOI) technology with a die size of 790 × 730 µm. The proposed structure achieved insertion loss, isolation, and voltage standing wave ratio (VSWR) of less than −0.9 dB, −40 dB, and 1.6, respectively, when the input signal was 3.8 GHz. The measured results prove the implemented switch shows the second and third harmonic distortion performances of less than −60 dBm when the input power level and frequency are 25 dBm and 3.8 GHz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.