Abstract

AbstractWith the development of industry and global warming, passive radiative cooling textiles have recently drawn great interest owing to saving energy consumption and preventing heat‐related illnesses. Nevertheless, existing cooling textiles often lack efficient sweat management capacity and wearable comfort under many practical conditions. Herein, a hierarchical cooling metafabric that integrates passive radiation, thermal conduction, sweat evaporation, and excellent wearable comfort is reported through an electrospinning strategy. The metafabric presents excellent solar reflectivity (99.7%, 0.3–2.5 µm) and selective infrared radiation (92.4%, 8–13 µm), given that the unique optical nature of materials and wettability gradient/micro‐nano hierarchical structure design. The strong moisture‐wicking effect (water vapor transmission (WVT) of 2985 g m−2 d−1 and directional water transport index (R) of 1029.8%) and high heat‐conduction capacity can synergistically enhance the radiative cooling efficiency of the metafabric. The outdoor experiment reveals that the metafabric can obtain cooling temperatures of 13.8 °C and 19.3 °C in the dry and sweating state, respectively. Meanwhile, the metafabric saves ≈19.3% of annual energy consumption compared with the buildings with HAVC systems in Shanghai. The metafabric also demonstrates desirable breathability, mechanical strength, and washability. The cost‐effective and high‐performance metafabric may offer a novel avenue for developing next‐generation personal cooling textiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.