Abstract
A ranking support vector machine (RSVM) is a typical pairwise method of learning to rank, which is effective in ranking problems. However, the training speed of RSVMs are not satisfactory, especially when solving large-scale data ranking problems. Recent years, many-core processing units (graphics processing unit (GPU), Many Integrated Core (MIC)) and multi-core processing units have exhibited huge superiority in the parallel computing domain. With the support of hardware, parallel programming develops rapidly. Open Computing Language (OpenCL) and Open Multi-Processing (OpenMP) are two of popular parallel programming interfaces. The authors present two high-performance parallel implementations of RSVM, an OpenCL version implemented on multi-core and many-core platforms, and an OpenMP version implemented on multi-core platform. The experimental results show that the OpenCL version parallel RSVM achieved considerable speedup on Intel MIC 7110P, NVIDIA Tesla K20M and Intel Xeon E5-2692v2, and it also shows good portability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have