Abstract

A monomer of fluorinated phthalonitrile, namely 4,4'-bis(p-perfluoro-phenol-(bis(p-phenol)propane-2,2-diyl)-p-oxy-diphthalonitrile) (PBDP), was synthesized by the nucleophilic substitution reaction of bisphenol A, decafluorobiphenyl and 4-nitrophthalonitrile. The structure of the monomer was characterized by nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the PBDP monomer was synthesized successfully. The monomer was cured in the presence of 4-(aminophenoxy)phthalonitrile (APPH) and the curing behaviour was investigated by differential scanning calorimetry (DSC), suggesting a low melting point of 96 °C and an excellent processing window (96-262 °C). Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the fluorinated phthalonitrile resin possessed outstanding thermal and thermo-oxidative stabilities as well as good mechanical properties. The glass transition temperature was >400 °C and the 5% thermal degradation temperature was 501 °C. When the frequency was 50 MHz, the dielectric constant and dielectric loss of the polymer were 2.84 and 0.007, respectively. The PBDP resin has ultra-low water absorption of 0.77% and 1.4%, when exposed to an aqueous environment for 50 days at 24 °C and for 24 h at 100 °C, respectively. The prepared PBDP resin with outstanding thermal stability and low dielectric constant is an ideal candidate for aerospace industries, and microelectronic and other electronic packaging materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.