Abstract

Neural electrodes have been widely used to monitor neurological disorders and have a major impact on neuroscience, whereas traditional electrodes are limited to their inherent high impedance, which makes them insensitive to weak signals during recording neural signals. Herein, we developed a neural electrode based on the graphene/Ag van der Waals heterostructure for improving the detection sensitivity and signal-to-noise ratio (SNR). The impedance of the graphene/Ag electrode is reduced to 161.4 ± 13.4 MΩ μm2, while the cathode charge-storage capacity (CSCc) reaches 24.2 ± 1.9 mC cm-2, which is 6.3 and 48.4 times higher than those of the commercial Ag electrodes, respectively. Density functional theory (DFT) results find that the Ag-graphene interface has more doped electronic states, providing faster electron transfer and enhanced interfacial transport. In vivo detection sensitivity and SNR of graphene/Ag electrodes are significantly improved. The current work provides a feasible solution for designing brain electrodes to monitor neural signals more sensitively and accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call