Abstract
Implantable neural microelectrodes for recording and stimulating neural activity are critical for research in neuroscience and clinical neuroprosthetic applications. A current need exists for developing new technological solutions for obtaining highly selective and stealthy electrodes that provide reliable neural integration and maintain neuronal viability. This paper reports a novel Hollow Ring-like type electrode to sense and/or stimulate neural activity from three-dimensional neural networks. Due to its unique design, the ring electrode architecture enables easy and reliable access of the electrode to three-dimensional neural networks with reduced mechanical contact on the biological tissue, while providing improved electrical interface with cells. The Hollow Ring electrodes, particularly when coated with the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), show improved electrical properties with extremely low impedance (7 MΩ μm2) and high charge injection capabilities (15 mC/cm2), when compared to traditional planar disk-type electrodes. The ring design also serves as an optimal architecture for cell growth to create an optimal subcellular electrical–neural interface. In addition, we showed that neural signals recorded by the ring electrode were better resolved than recordings from a traditional disk-type electrode improving the signal-to-noise ratio (SNR) and the burst detection from 3D neuronal networks in vitro. Overall, our results suggest the great potential of the hollow ring design for developing next-generation microelectrodes for applications in neural interfaces used in physiological studies and neuromodulation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.