Abstract

A high-performance 0.25- mu m-channel CMOS technology is designed and characterized. The technology utilizes n/sup +/ polysilicon gates on nFETs and p/sup +/ polysilicon gates on pFETs so that both FETs are surface channel devices. The gate oxide thickness is 7 nm. Abrupt As and B source/drain junctions with reduced power supply voltage are used to achieve high-speed operation. The technology yields a loaded ring oscillator (NAND, FI=FO=3, C/sub w/=0.2 pF) delay per stage of 280 ps at W/sub eff//L/sub eff/=15 mu m/0.25 mu m, which is a 1.7* improvement over 0.5- mu m CMOS technology. At a channel length of 0.18 mu m, a CMOS stage delay of 38 ps for unloaded inverter and 185 ps for loaded NAND ring oscillators were measured. Key design issues of the CMOS devices are discussed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.