Abstract

In this paper, we present a high-order approach for solving one- and two-dimensional time-space fractional diffusion equations (FDEs) with Caputo-Riesz derivatives. To design the scheme, the Caputo temporal derivative is approximated using a high-order method, and the spatial Riesz derivative is discretized by the second-order weighted and shifted Grünwald difference (WSGD) method. It is proved that the scheme is unconditionally stable and convergent with the order of O(ταh2+τ4), where τ and h are time and space step sizes, respectively. We illustrate the accuracy and effectiveness of the method by providing several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.