Abstract

The dynamic modeling theory of a flexible beam which is rotating in a plane is further studied, and the highorder coupling dynamic model is investigated here. Both the transversal deformation and the longitudinal deformation of the flexible beam are considered. And the non-linear coupling deformation term, also known as the longitudinal shortening term caused by transversal deformation, is considered here. The high-order terms related to the non-linear coupling term are retained, which are ignored in the first-order approximation coupling modeling. Thus, we can get the rigid-flexible coupling dynamic equations of the system. The high-order coupling model can not only be used in small deformation case, but also in large deformation case. Then simulations, compared to the absolute nodal coordinate formulation and the first-order coupling model, are given to prove the validity of the high-order coupling model. And the results show that the high-order coupling model can make up for the deficiency of the first-order approximation coupling model in the large deformation situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.