Abstract

A data transfer (called later remap) of physical fields between two meshes is an important step of arbitrary Lagrangian-Eulerian (ALE) simulations. This step is challenging for high-order discontinuous Galerkin schemes since the Lagrangian flow motion leads to high-order meshes with curved faces. It becomes even more challenging for unstructured polygonal meshes that do not have a polynomial map from the reference to a current cell. We propose and analyze a new framework to create remap schemes on curvilinear polygonal meshes based on the theory of virtual element projectors. We derive a conservative remap scheme that is high-order accurate in space and time. The properties of this scheme are studied numerically for smooth and discontinuous fields on unstructured quadrilateral and polygonal meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.