Abstract

Fifth-generation (5G) technology is extremely important in the current context since it seeks to fix the shortcomings of its predecessors, the 4G generation. To achieve this goal, this project entails constructing a small ultra-wideband (UWB) MIMO antenna featuring an anti-parallel layout, designed for operation within the millimeter-wave spectrum. Moreover, the investigation scrutinizes and fine-tunes the mutual coupling interaction between the two elements in detail. The presented MIMO antenna occupies a small footprint of 6x17.37 mm2. Despite its compact dimensions, this MIMO antenna provides an impressive isolation of 65 dB, attributed to the adequate inter-element spacing and the anti-parallel arrangement. Additionally, the integration of a defected ground structure (DGS) enhances isolation by approximately 20 dB. Furthermore, the proposed MIMO antenna demonstrates a satisfactory gain of approximately 6 dBi, boasting high efficiency surpassing 96%, and lying between 34.1 and 39.7 GHz. The proposed antenna has undergone simulation and analysis utilizing both the High-Frequency Structure Simulator (HFSS) and Computer Simulation Technology (CST) in order to confirm its utility. Based on these findings, the suggested MIMO antenna appears to be well-suited for compatibility with 5G communication systems, specifically covering the n260 band (37 to 40 GHz) and the Ka-band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.