Abstract

The objective of the current work is to examine the influence of suction on the unsteady Magnetohydrodynamic (MHD) thermal and mass transfer of a nanofluid flow past a flat sheet in the occurrence of double stratification. The governed highly non-linear PDEs along with corresponding appropriate boundary circumstances are first converted into dimensionless system by the use of similarity translations. The numerical methodology used for solving the transformed ordinary differential equations (ODEs) is often known as the Keller box procedure. This study investigates and visually represents the impact of non-dimensional factors such as Hartman number, Prandtl number, Suction, Eckert number, unsteadiness factor, thermal and solutal stratification on the distributions of velocity, concentration, temperature, drag force, Nusselt, and Sherwood number. The numerical calculation and graphical presentation are conducted to evaluate the impacts of several significant quantities on the flow model. It has been discovered that a rise in the suction parameter leads to an enhancement in the velocity gradient, while simultaneously causing a reduction in the concentration and temperature profiles. The outcomes of the study could have implications for various engineering and industrial applications that control and manipulate fluid flows and heat transfer. The results of the research may have ramifications for a wide range of industrial and engineering applications that control and regulate heat transfer and fluid dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.