Abstract
Minimally-invasive surgery is rapidly growing and has become a standard approach for many operations. However, it requires intensive practice to achieve competency. The current training often relies on animal organ models or physical organ phantoms, which do not offer realistic surgical scenes or useful real-time feedback for surgeons to improve their skills. Furthermore, the objective quantitative assessment of endoscopic skills is also lacking. Here, we report a high-fidelity artificial urological system that allows realistic simulation of endourological procedures and offers a quantitative assessment of the surgical performance. The physical organ model was fabricated by 3D printing and two-step polymer molding with the use of human CT data. The system resembles the human upper urinary tract with a high-resolution anatomical shape and vascular patterns. During surgical simulation, endoscopic videos are acquired and analyzed to quantitatively evaluate performance skills by a customized computer algorithm. Experimental results show significant differences in the performance between professional surgeons and trainees. The surgical simulator offers a unique chance to train endourological procedures in a realistic and safe environment, and it may also lead to a quantitative standard to evaluate endoscopic skills.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have