Abstract

Increased adiposity is a significant risk factor for pancreatic cancer development. Multiple preclinical studies have documented that high-fat, high calorie diets, rich in omega-6 fatty acids (FA) accelerate pancreatic cancer development. However, the effect of a high-fat, low sucrose diet (HFD), on pancreatic carcinogenesis remains unclear. We evaluated the impact of a HFD on early-stage pancreatic carcinogenesis in the clinically relevant KrasLSL-G12D/+; Ptf1aCre/+ (KC) genetically engineered mouse model, and characterized the role of the mesenteric adipose tissue (MAT). Cohorts of male and female KC mice were randomly assigned to a control diet (CD) or a HFD, matched for FA composition (9:1 of omega-6 FA: omega-3 FA), and fed their diets for 8 weeks. After 8 weeks on a HFD, KC mice had significantly higher body weight, fat mass, and serum leptin compared to CD-fed KC mice. Furthermore, a HFD accelerated pancreatic acinar-to-ductal metaplasia (ADM) and proliferation, associated with increased activation of ERK and STAT3, and macrophage infiltration in the pancreas, compared to CD-fed KC mice. Metabolomics analysis of the MAT revealed sex differences between diet groups. In females, a HFD altered metabolites related to FA (α-linolenic acid and linoleic acid) and amino acid metabolism (alanine, aspartate, glutamate). In males, a HFD significantly affected pathways related to alanine, aspartate, glutamate, linoleic acid, and the citric acid cycle. A HFD accelerates early pancreatic ADM through multifaceted mechanisms, including effects at the tumor and surrounding MAT. The sex-dependent changes in MAT metabolites could explain some of the sex differences in HFD-induced pancreatic ADM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.