Abstract
Hypoxia stress has been demonstrated to impede animal embryonic development, spermatogenesis, and lactation, leading to decreased animal production performance. However, the impact of hypoxia-induced activation of hypoxia inducible factor-1 (HIF-1) signaling on milk protein and fat synthesis remains unclear. L-leucine, a branched-chain amino acid, is known to modulate milk protein and fat synthesis. Therefore, our study aimed to evaluate the effect of L-leucine on milk protein and fat synthesis under hypoxic conditions and shed light on the molecular mechanism using an in vitro model. The results indicated that hypoxia treatment significantly decreased the synthesis of α-casein and β-casein, as well as inhibited factors related to milk fat synthesis in bovine mammary epithelial cells (MAC-T). Additionally, hypoxia stress suppressed the activities of the mammalian target of rapamycin (mTOR) and protein kinase B (AKT). Interfering with HIF-1α significantly reversed the expression of AKT, mTOR and factors related to milk synthesis. Importantly, supplementation with L-leucine activated AKT/mTOR signaling, thereby enhancing milk protein and fat synthesis in MAC-T cells to some extent. In conclusion, these findings suggest that HIF-1 signaling plays an important role in milk synthesis and that L-leucine may stimulate the synthesis of milk protein and fat by activating the AKT/mTOR signaling pathway under hypoxic conditions, making it a potential additive for promoting milk synthesis inhibited by hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.