Abstract
A simple and scalable method to fabricate a novel high-energy asymmetric supercapacitor using tomato-leaf-derived hierarchical porous activated carbon (TAC) and electrochemically deposited polyaniline (PANI) for a battery-free heart-pulse-rate monitor is reported. In this study, TAC is prepared by simple pyrolysis, exhibiting nanosheet-type morphology and a high specific surface area of ≈1440 m2 g-1 , and PANI is electrochemically deposited onto carbon cloth. The TAC- and PANI- based asymmetric supercapacitor demonstrates an electrochemical performance superior to that of symmetric supercapacitors, delivering a high specific capacitance of 248 mF cm-2 at a current density of 1.0mA cm-2 . The developed asymmetric supercapacitor shows a high energy density of 270 µWh cm-2 at a power density of 1400 µW cm-2 , as well as an excellent cyclic stability of ≈95% capacitance retention after 10000 charging-discharging cycles while maintaining ≈98% Coulombic efficiency. Impressively, the series-connected asymmetric supercapacitors can operate a battery-free heart-pulse-rate monitor extremely efficiently upon solar-panel charging under regular laboratory illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.