Abstract

The authors recently developed a high-frequency pulsed plasma process for methane conversion to acetylene and hydrogen using a co-axial cylindrical (CAC) type of reactor. The energy efficiency represented by methane conversion rate per unit input energy has been improved so that such a pulsed plasma has potential for commercial acetylene production. A pulsed plasma consists of a pulsed corona discharge and a pulsed spark discharge. Most of energy is injected over the duration of the pulsed spark discharge. Methane conversion using this kind of pulsed plasma is a kind of pyrolysis enhanced by the pulsed spark discharge. In this study, a point-to-point (PTP) type of reactor that can produce a discharge channel over the duration of a pulse discharge was used for the pulsed plasma conversion of methane. The energy efficiency and carbon formation on electrodes have been improved. The influences of pulse frequency and pulse voltage on methane conversion rate and product selectivity were investigated. The features of methane conversion using PTP and CAC reactors were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.