Abstract
Realistic images can be computed at interactive frame rates for Computer Graphics applications. Meanwhile, High Dynamic Range (HDR) rendering has a growing success in video games and virtual reality applications, as it improves the image quality and the player’s immersion feeling. In this paper, we propose a new method, based on a physical lighting model, to compute in real time a HDR illumination in virtual environments. Our method allows to re-use existing virtual environments as input, and computes HDR images in photometric units. Then, from these HDR images, displayable 8-bit images are rendered with a tone mapping operator and displayed on a standard display device. The HDR computation and the tone mapping are implemented in OpenSceneGraph with pixel shaders. The lighting model, together with a perceptual tone mapping, improves the perceptual realism of the rendered images at low cost. The method is illustrated with a practical application where the dynamic range of the virtual environment is a key rendering issue: night-time driving simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.