Abstract

As a crucial component supporting aero-engine functionality, effective fault diagnosis of bearings is essential to ensure the engine's reliability and sustained airworthiness. However, practical limitations prevail due to the scarcity of aero-engine bearing fault data, hampering the implementation of intelligent diagnosis techniques. This paper presents a specialized method for aero-engine bearing fault diagnosis under conditions of limited sample availability. Initially, the proposed method employs the refined composite multiscale phase entropy (RCMPhE) to extract entropy features capable of characterizing the transient signal dynamics of aero-engine bearings. Based on the signal amplitude information, the composite multiscale decomposition sequence is formulated, followed by the creation of scatter diagrams for each sub-sequence. These diagrams are partitioned into segments, enabling individualized probability distribution computation within each sector, culminating in refined entropy value operations. Thus, the RCMPhE addresses issues prevalent in existing entropy theories such as deviation and instability. Subsequently, the bonobo optimization support vector machine is introduced to establish a mapping correlation between entropy domain features and fault types, enhancing its fault identification capabilities in aero-engine bearings. Experimental validation conducted on drivetrain system bearing data, actual aero-engine bearing data, and actual aerospace bearing data demonstrate remarkable fault diagnosis accuracy rates of 99.83%, 100%, and 100%, respectively, with merely 5 training samples per state. Additionally, when compared to the existing eight fault diagnosis methods, the proposed method demonstrates an enhanced recognition accuracy by up to 28.97%. This substantiates its effectiveness and potential in addressing small sample limitations in aero-engine bearing fault diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.