Abstract
A discrete matrix spectral problem is introduced, and a hierarchy of nonlinear lattice equations is derived. It is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. An integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonlinearization of the Lax pair and adjoint Lax pair for the resulting hierarchy. The binary Bargmann symmetry constraint leads to Bäcklund transformation for the resulting nonlinear integrable lattice equations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have