Abstract

Social and decision-making deficits are often the first symptoms of neuropsychiatric disorders. In recent years, economic games, together with computational models of strategic learning, have been increasingly applied to the characterization of individual differences in social behavior, as well as their changes across time due to disease progression, treatment, or other factors. At the same time, the high dimensionality of these data poses an important challenge to statistical estimation of these models, potentially limiting the adoption of such approaches in patients and special populations. We introduce a hierarchical Bayesian implementation of a class of strategic learning models, experience-weighted attraction (EWA), that is widely used in behavioral game theory. Importantly, this approach provides a unified framework for capturing between- and within-participant variation, including changes associated with disease progression, comorbidity, and treatment status. We show using simulated data that our hierarchical Bayesian approach outperforms representative agent and individual-level estimation methods that are commonly used in extant literature, with respect to parameter estimation and uncertainty quantification. Furthermore, using an empirical dataset, we demonstrate the value of our approach over competing methods with respect to balancing model fit and complexity. Consistent with the success of hierarchical Bayesian approaches in other areas of behavioral science, our hierarchical Bayesian EWA model represents a powerful and flexible tool to apply to a wide range of behavioral paradigms for studying the interplay between complex human behavior and biological factors.

Highlights

  • Changes in social behavior and decision-making are often among the first symptoms of neuropsychiatric disorders

  • We introduce a hierarchical Bayesian experience-weighted attraction (EWA) model that includes participantand session-specific model parameters, allowing for the ability to quantify variability across all parameters, to determine if there are consistent and measurable trends in the parameters as a function of participant- and session-level explanatory variables and to account for correlation that may arise from the same individual participating in multiple sessions, potentially under different sets of experimental conditions

  • Our model presents several important extensions to a recent hierarchical Bayesian analysis package (Ahn, Haines, & Zhang, 2017) that includes a specific implementation of the EWA model

Read more

Summary

Introduction

Changes in social behavior and decision-making are often among the first symptoms of neuropsychiatric disorders. There has been increasing application of economic games, together with computational models of strategic learning, to characterize social decision-making as well as its underlying neural mechanisms Such computational approaches have been used to investigate the maintenance of cooperation in patients with borderline personality disorder (King-Casas et al, 2008) and the influence of depressive symptomatology on learning from social rewards (Safra, Chevallier, & Palminteri, 2019). The essence of this approach lies in the quantitative characterization of processes by which stimulus inputs drive behavioral responses, thereby enabling the use of behavioral and neural data to rigorously test existing theories of brain function and to inspire the development of new theories (O’Doherty, Hampton, & Kim, 2007)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call