Abstract

Because of activity duration uncertainties, large-scale projects can often be modeled most realistically as probabilistic activity networks. The complex interactions among activities with uncertain durations virtually assures a low probability that these projects will be completed before predetermined due dates. As a result, it is often necessary to expedite individual activities in these projects to improve due date performance. This research introduces a dynamically applied matrix simulation approach for selecting expediting options in order to control the probability of successful project completion before predefined due dates. Experiments are conducted to demonstrate the ability of this new approach to generate quality alternatives and efficiently evaluate large-scale projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.