Abstract

This article presents a novel cellular automata (CA) approach to simulate the spatio-temporal process of urban land-use change based on the simulated annealing (SA) algorithm. The SA algorithm enables dynamic optimisation of the CA's transition rules that would otherwise be difficult to configure using conventional mathematical methods. In this heuristic approach, an objective function is constructed based on a theoretical accumulative disagreement between the simulated land-use pattern and the actual land-use pattern derived from remotely sensed imagery. The function value that measures the mismatch between the actual and the simulated land-use patterns would be minimised randomly through the SA process. Hence, a set of attribution parameters that can be used in the CA model is achieved. An SA optimisation tool was developed using Matlab and incorporated into the cellular simulation in GIS to form an integrated SACA model. An application of the SACA model to simulate the spatio-temporal process of land-use change in Jinshan District of Shanghai Municipality, PR China, from 1992 to 2008 shows that this modelling approach is efficient and robust and can be used to reconstruct historical urban land-use patterns to assist with urban planning policy-making and actions. Comparison of the SACA model with a typical CA model based on a logistic regression method without the SA optimisation (also known as LogCA) shows that the SACA model generates better simulation results than the LogCA model, and the improvement of the SACA over the LogCA model is largely attributed to higher locational accuracy, a feature desirable in most spatially explicit simulations of geographical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.