Abstract

In spite of its prevalent usage for simulating the full-field process of the two-phase flow, the Euler–Lagrange method suffers from a heavy computing burden. Graphics processing units (GPUs), with their massively parallel architecture and high floating-point performance, provide new possibilities for high-efficiency simulation of liquid-jet-related systems. In this paper, a central processing unit/graphics processing unit (CPU/GPU) parallel algorithm based on the Euler–Lagrange scheme is established, in which both the gas and liquid phase are executed on the GPUs. To realize parallel tracking of the Lagrange droplets, a droplet dynamic management method is proposed, and a droplet-locating method is developed to address the cell. Liquid-jet-related simulations are performed on one core of the CPU with a GPU. The numerical results are consistent with the experiment. Compared with a setup using 32 cores of CPUs, considerable speedup is obtained, which is as high as 32.7 though it decreases to 20.2 with increasing droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call