Abstract

Nanoscale molecular clusters are attractive for the design of materials exhibiting original functions and properties. In particular, copper iodide clusters of high nuclearity are well-known for their stimuli-responsive luminescence properties. The synthesis and characterization of an unprecedented copper(I) iodide molecular cluster based on an original heptanuclear inorganic core are reported. This nanometer-size cluster is formulated as [Cu7I7(P(C6H4CF3)3)6(CH3CN)] and its novel structure has been characterized by X-ray diffraction and multinuclear solid-state 63Cu, 31P, 13C, 19F, and 1H NMR spectroscopy. The photoluminescence properties of this cluster have been studied at variable temperature. Density functional theory calculations have been performed on this large molecular structure and allow one to rationalize the observed luminescence properties. This study highlights the crucial role of cuprophilic interactions in molecular copper iodide clusters for exhibiting photoactive properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.