Abstract

We consider a hard core (HC) model with a countable set [Formula: see text] of spin values on the Cayley tree. This model is defined by a countable set of parameters [Formula: see text]. For all possible values of parameters, we give limit points of the dynamical system generated by a function which describes the consistency condition for finite-dimensional measures. Also, we prove that every periodic Gibbs measure for the given model is either translation-invariant or periodic with period two. Moreover, we construct uncountable set of Gibbs measures for this HC model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.