Abstract

Memristive neural networks (MNNs), which use memristors as neurons or synapses, have become a hot research topic recently. However, most memristors are not compatible with mainstream integrated circuit technology and their stabilities in large-scale are not very well so far. In this paper, a hardware friendly MNN circuit is introduced, in which the memristive characteristics are implemented by digital integrated circuit. Through this method, spike timing dependent plasticity (STDP) and unsupervised learning are realized. A weight sharing mechanism is proposed to bridge the gap of network scale and hardware resource. Experiment results show the hardware resource is significantly saved with it, maintaining good recognition accuracy and high speed. Moreover, the tendency of resource increase is slower than the expansion of network scale, which infers our method's potential on large scale neuromorphic network's realization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.