Abstract
an unsuitable representation will make the task of mining classification rules very hard for a traditional evolutionary algorithm (EA). But for a given dataset, it is difficult to decide which one is the best representation used in the mining progress. In this paper, we analyses the effects of different representations for a traditional EA and proposed a growing evolutionary algorithm which was robust for mining classification rules in different datasets. Experiments showed that the proposed algorithm is effective in dealing with problems of deception, linkage, epistasis and multimodality in the mining task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Systems and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.