PurposeThis paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions.Design/methodology/approachThis study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case.FindingsThe results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning.Research limitations/implicationsThere are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions.Originality/valuePrior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call