Abstract

The development of fully renewable and biodegradable composites for short-term applications was pursued by combining a compatibilized poly(lactic acid) (PLA)/poly(butylene succinate-co-adipate) (PBSA) (60:40 wt:wt) blend with coffee silver skin (CSS), an industrial byproduct from coffee processing. An epoxy-based reactive agent (Joncryl ADR-4468) was added as a compatibilizer. CSS was incorporated at 5, 10, and 20 wt% in the blend both in the as-received state and after a simple thermal treatment in boiling water, which was performed to mitigate the negative impact of this filler on the rheological and mechanical properties of the blend. The CSS treatment effectively increased the filler degradation temperature of 30-40 °C, enabling stable melt processing of the composites. It also improved filler-matrix adhesion, resulting in enhanced impact properties (up to +172% increase in impact energy compared to the untreated filler). Therefore, treated CSS demonstrated potential as an effective green reinforcement for PLA/PBSA blends for rigid packaging applications. Future works will focus on studying suitable surface modification of CSS to further increase the interfacial interaction and the tensile quasi-static properties, to fully exploit the capabilities of this renewable material toward the development of eco-friendly composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.