Abstract

The xanthene (dibenzopyran) framework constitutes the core structure of many biologically active compounds, that they have been of interest because of their pharmacological activities like antiviral, antibacterial, anti-inflammatory, and CCR1 antagonist. As heterogeneous catalysts offer several advantages over homogeneous catalysts, the performance of reactions on the surface of nanosized heterogeneous salts has received a great deal of interest in recent years. In the area of nanosized heterogeneous catalysts there is a noticeable range of reactions that are catalyzed efficiently by TiO2 NPs. Moreover, carbon nanotubes (CNTs) as a support can be used to obtain nanoparticles with modified morphology, structural, chemical, electrical, and optical properties. The catalytic activity of titanium dioxide supported on carbon nanotubes has been greatly improved. The present methodology focus on the synthesis of 7,7-dimethyl-10-aryl- 6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones, through a condensation reaction of dimedone, aromatic aldehydes and 3,4-methylenedioxyphenol, using a catalytic amount of TiO2- CNTs nanocomposite (15 mol%) at 80 ˚C in aqueous media, within 60-90 min. The TiO2-CNTs nanocomposite was also prepared by a known simple sonochemical method. A series of 7,7-dimethyl-10-aryl-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones were successfully synthesized in high yields (92-98%). All synthesized compounds were well characterized by their satisfactory elemental analyses, IR, 1H and 13C NMR spectroscopy. The synthesized catalyst was fully characterized by SEM, TEM, XRD, and EDX techniques. In summary, this investigation constitutes a novel and efficient route for the synthesis of 7,7-dimethyl-10-aryl-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones in high yields, by a three-component reaction of dimedone, aromatic aldehydes and 3,4-methylenedioxyphenol in water and in the presence of the TiO2-CNTs nanocomposite as a green, effective and recyclable catalyst. This novel method has the advantages of high yields, mild reaction conditions, short reaction time, easy work-up, inexpensive reagents and environmentally friendly procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.