Abstract

Recovery of high-content and valuable elements including phosphorus (P) is critical for recycling of spent LiFePO4 battery, but P recovery is challengeable due to the poor solubility of lithium phosphate and iron phosphate. This study compared two strategies to recover P by adopting sulfide salt to induce P dissolution, i.e., recovery of P directly from LiFePO4, and step-by-step recovery of Li then P. The results revealed that the second strategy was more efficient because of the higher recovering efficiency and selectivity. Accordingly, an acid-free process to recover P was successfully demonstrated. Li-recovery efficiency of 97.5 % was reached at a leaching time of 65 min, and nearly 100 % P-recovery efficiency was reached at 5 h. Mechanism analysis revealed that the transforming of delithiated LiFePO4 crystal to NaFeS2 was mainly responsible for P dissolution. Thermodynamic analysis and density functional theory calculation further proved the transformation reaction, and a stepwise-transformation mechanism was proposed. In addition, P was reclaimed in the form of soluble phosphate salts. The process is especially appealing due to its environmental and economic benefits for recycling spent LiFePO4 batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call