Abstract

Bacterial speck disease, caused by Pseudomonas syringae pv. tomato (Pst), is one of the most pervasive biological adversities in tomato cultivation, in both industrial and in table varieties. In this work synthesis, biochemical and antibacterial properties of a novel organic nanostructured pesticide composed of chitosan hydrochloride (CH) as active ingredient, cellulose nanocrystals (CNC) as nanocarriers and starch as excipient were evaluated. In order to study the possibility of delivering CH, the effects of two different types of starches, extracted from a high amylose bread wheat (high amylose starch—HA Starch) and from a control genotype (standard starch—St Starch), were investigated. Nanostructured microparticles (NMP) were obtained through the spray-drying technique, revealing a CH loading capacity proximal to 50%, with a CH release of 30% for CH-CNC-St Starch NMP and 50% for CH-CNC-HA Starch NMP after 24 h. Both NMP were able to inhibit bacterial growth in vitro when used at 1% w/v. Moreover, no negative effects on vegetative growth were recorded when NMP were foliar applied on tomato plants. Proposed nanostructured pesticides showed the capability of diminishing Pst epiphytical survival during time, decreasing disease incidence and severity (from 45% to 49%), with results comparable to one of the most used cupric salt (hydroxide), pointing out the potential use of CH-CNC-Starch NMP as a sustainable and innovative ally in Pst control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.