Abstract
A series of tungstophosphoric acid (H3PW12O40; HPW) loaded on metal oxide catalysts, namely H3PW12O40/M (M= TiO2, CeO2, ZrO2) was prepared by initial wetting impregnation method and their catalytic performances were also investigated during the condensation reaction of benzaldehyde with glycol. Among them, the 20 wt% H3PW12O40/TiO2 catalyst demonstrated highly active with superior acetal yield (90.1 %) and excellent durability. The high activity of the catalyst derived from high surface area, ultra-strong Brand#248;nsted acidity and synergetic effect of Brand#248;nsted-Lewis acid. Response surface methodology (RSM) based on Box-Behnken design (BBD) was used to optimize the course of the condensation reaction of benzaldehyde with glycol, and the optimal benzaldehyde glycol acetal yield (93.4 %) could be obtained. The optimized yield and the experimental results are similar. Moreover, under optimal reaction conditions, the activation energy (Ea) of reaction could be obtained through the kinetic study of the irreversible parallel reaction model, and the Ea was 23.24 kJ/mol.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have