Abstract

The following problem is considered. Givenm+1 points {x i }0 m inR n which generate anm-dimensional linear manifold, construct for this manifold a maximally linearly independent basis that consists of vectors of the formx i −x j . This problem is present in, e.g., stable variants of the secant and interpolation methods, where it is required to approximate the Jacobian matrixf′ of a nonlinear mappingf by using values off computed atm+1 points. In this case, it is also desirable to have a combination of finite differences with maximal linear independence. As a natural measure of linear independence, we consider the hadamard condition number which is minimized to find an optimal combination ofm pairs {x i ,x j }. We show that the problem is not NP-hard, but can be reduced to the minimum spanning tree problem, which is solved by the greedy algorithm inO(m 2) time. The complexity of this reduction is equivalent to onem×n matrix-matrix multiplication, and according to the Coppersmith-Winograd estimate, is belowO(n 2.376) form=n. Applications of the algorithm to interpolation methods are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.