Abstract

Highly compact and geometrically complex piezoceramics are required by a variety of electromechanical devices owing to their outstanding piezoelectricity, mechanical stability and extended application scenarios. 3D printing is currently the mainstream technology for fabricating geometrically complex piezoceramic components. However, it is hard to print piezoceramics in a curve shape while also keeping its compactness due to restrictions on the ceramic loading and the viscosity of feedstocks. Here, we report a gravity-driven sintering (GDS) process to directly fabricate curved and compact piezoceramics by exploiting gravitational force and high-temperature viscous behavior of sintering ceramic specimens. The sintered lead zirconate titanate (PZT) ceramics possess curve geometries that can be facilely tuned via the initial mechanical boundary design, and exhibit high piezoelectric properties comparable to those of conventional-sintered compact PZT (d33 = 595 pC/N). In contrast to 3D printing technology, our GDS process is suitable for scale-up production and low-cost production of piezoceramics with diverse curved surfaces. Our GDS strategy is an universal and facile route to fabricate curved piezoceramics and other functional ceramics with no compromise of their functionalities.

Highlights

  • Compact and geometrically complex piezoceramics are required by a variety of electromechanical devices owing to their outstanding piezoelectricity, mechanical stability and extended application scenarios. 3D printing is currently the mainstream technology for fabricating geometrically complex piezoceramic components

  • Piezoceramics are normally formed into dense bodies starting from green bodies via the sintering process in which the form of green bodies dictates the final shapes of the sintered structures

  • In the 3D printing process, because the processibility of feedstocks comprised of ceramic constituents and organic binders are linked to the ceramic loading, a compromise is always reached in 3D-printed ceramics where either one of the properties is set aside

Read more

Summary

Introduction

Compact and geometrically complex piezoceramics are required by a variety of electromechanical devices owing to their outstanding piezoelectricity, mechanical stability and extended application scenarios. 3D printing is currently the mainstream technology for fabricating geometrically complex piezoceramic components. Other attempts to fabricate curved piezoceramics by directly processing ceramic sintered bodies have been reported, which rely on the mismatch of CTE (coefficient of thermal expansion)[31,32,33,34] or mechanical properties (prestressed methods) of different layers[35,36]. Both the CTE-based and mechanically prestressed methods can only provide simple arc-shaped laminates within a small curvature. The specific laminate structures used in the thermal or prestress postprocessing methods limit their generality as well as the ability to form complex 3D geometries (e.g., doubly-curved configurations and large-curvature geometries)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.