Abstract
The conceptual divide between formal systems of computation and abstract models of chemistry is considered. As an attempt to concretely bridge this divide, a formalism is proposed that describes a constructive artificial chemistry on a space of directed graph structures. The idea for the formalism originates in computer science theory, with the traditional abstraction of a physical machine, the finite-state machine (FSM). In the FSM, the machine (state-transition graph) and input string (series of binary digits) are fundamentally distinct objects, separated by nature of the underlying formalism. This distinction is dissolved in the proposed system, resulting in a construction process that is r eflexive: graphs interact with their own topological structure to generate a product. It is argued that this property of reflexivity is a key element missing from earlier model chemistries. Examples demonstrate the continuous emergence complex self-similar topologies, novel reaction pathways, and seemingly open-ended diversity. Implications of these findings are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.