Abstract

Harnessing the inherent biological relevance of natural products requires a method for the recognition of biological effects that may subsequently lead to the discovery of particular targets. An unbiased multidimensional profiling method was used to examine the activities of natural products on primary cells derived from a Parkinson's disease patient. The biological signature of 482 natural products was examined using multiparametric analysis to investigate known cellular pathways and organelles implicated in Parkinson's disease such as mitochondria, lysosomes, endosomes, apoptosis, and autophagy. By targeting several cell components simultaneously the chance of finding a phenotype was increased. The phenotypes were then clustered using an uncentered correlation. The multidimensional phenotypic screening showed that all natural products, in our screening set, were biologically relevant compounds as determined by an observed phenotypic effect. Multidimensional phenotypic screening can predict the cellular function and subcellular site of activity of new compounds, while the cluster analysis provides correlation with compounds with known mechanisms of action. This study reinforces the value of natural products as biologically relevant compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.