Abstract

We consider a family of fractional porous media equations, recently studied by Caffarelli and V\'azquez. We show the construction of a weak solution as Wasserstein gradient flow of a square fractional Sobolev norm. Energy dissipation inequality, regularizing effect and decay estimates for the $L^p$ norms are established. Moreover, we show that a classical porous medium equation can be obtained as a limit case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.