Abstract

A recurring obstacle in the study of Wasserstein gradient flow is the lack of convexity of the square Wasserstein metric. In this paper, we develop a class of transport metrics that have better convexity properties and use these metrics to prove an Euler−Lagrange equation characterizing Wasserstein discrete gradient flow. We then apply these results to give a new proof of the exponential formula for the Wasserstein metric, mirroring Crandall and Liggett’s proof of the corresponding Banach space result [M.G. Crandall and T.M. Liggett, Amer. J. Math. 93 (1971) 265–298]. We conclude by using our approach to give simple proofs of properties of the gradient flow, including the contracting semigroup property and energy dissipation inequality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call