Abstract
Digital scan conversion algorithm is the most computational intensive part of B-mode ultrasound imaging. Traditionally, in order to meet the requirements of real-time imaging, digital scan conversion algorithm often traded off image quality for speed, such as the use of simple image interpolation algorithm, the use of look-up table to carry out polar coordinates transform and logarithmic compression. This paper presents a GPU-based high-definition real-time ultrasound digital scan conversion algorithm implementation. By rendering appropriate proxy geometry, we can implement a high precision digital scan conversion pipeline, including polar coordinates transform, bi-cubic image interpolation, high dynamic range tone reduction, line average and frame persistence FIR filtering, 2D post filtering, fully in the fragment shader of GPU at real-time speed. The proposed method shows the possibility of updating exist FPGA or ASIC based digital scan conversion implementation to low cost GPU based high-definition digital scan conversion implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.