Abstract

Abstract In this study, a 2D shallow water flow solver integrated with a water quality model is presented. The interaction between the main water quality constituents included is based on the Water Quality Analysis Simulation Program. Efficiency is achieved by computing with a combination of a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU) device. This technique is intended to provide robust and accurate simulations with high computation speedups with respect to a single-core CPU in real events. The proposed numerical model is evaluated in cases that include the transport and reaction of water quality components over irregular bed topography and dry–wet fronts, verifying that the numerical solution in these situations conserves the required properties (C-property and positivity). The model can operate in any steady or unsteady form allowing an efficient assessment of the environmental impact of water flows. The field data from an unsteady river reach test case are used to show that the model is capable of predicting the measured temporal distribution of dissolved oxygen and water temperature, proving the robustness and computational efficiency of the model, even in the presence of noisy signals such as wind speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.