Abstract
We present a Graphics Processing Unit (GPU)-accelerated nodal discontinuous Galerkin method for the solution of the three-dimensional Euler equations that govern the motion and thermodynamic state of the atmosphere. Acceleration of the dynamical core of atmospheric models plays an important practical role in not only getting daily forecasts faster, but also in obtaining more accurate (high resolution) results within a given simulation time limit. We use algorithms suitable for the single instruction multiple thread architecture of GPUs to accelerate our model by two orders of magnitude relative to one core of a CPU. Tests on one node of the Titan supercomputer show a speedup of up to 15 times using the K20X GPU as compared to that on the 16-core AMD Opteron CPU. The scalability of the multi-GPU implementation is tested using 16,384 GPUs, which resulted in a weak scaling efficiency of about 90%. Finally, the accuracy and performance of our GPU implementation is verified using several benchmark problems representative of different scales of atmospheric dynamics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have