Abstract

A dual-mode electrochemical biosensor is successfully developed for simultaneous detection of two different kinds of breast cancer biomarkers, namely cancer antigen 15-3 (CA 15-3) and microRNA-21 (miRNA-21), for the first time. The sensor composes of a poly(3-aminobenzylamine)/two-dimensional (2D) molybdenum selenide/graphene oxide nanocomposite modified two-screen-printed carbon electrode array (dual electrode), functionalized individually with 2,3-diaminophenazine-gold nanoparticles and toluidine blue-gold nanoparticles. Both kinds of the redox probe-gold nanoparticles are employed as signaling molecules and supports for immobilization of anti-CA 15-3 antibodies and capture DNA-21 probes, respectively. Due to the good conductivity and high surface-to-volume ratio of the nanocomposite, high amount of the antibodies and capture probes can be immobilized on the modified dual-electrode, giving the efficient duplex detection. Consequently, the biosensor provides good selectivity, and high sensitivity for the dual target analyte detection. The experimental results show that this label-free biosensor exhibits good linear responses to the concentrations of both target analytes with the limits of detection (LODs) of 0.14 U mL−1 and 1.2 fM for CA 15-3 and miRNA-21, respectively. This assay strategy has a great potential to be further developed for the simultaneous detection of a variety of miRNAs and protein biomarkers for point-of-care (POC) diagnostic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.