Abstract
In this paper, we examine the two-dimensional variable-sized bin packing problem (2DVSBPP), where the task is to pack all given rectangles into bins of various sizes such that the total area of the used bins is minimized. We partition the search space of the 2DVSBPP into sets and impose an order on the sets, and then use a goal-driven approach to take advantage of the special structure of this partitioned solution space. Since the 2DVSBPP is a generalization of the two-dimensional bin packing problem (2DBPP), our approach can be adapted to the 2DBPP with minimal changes. Computational experiments on the standard benchmark data for both the 2DVSBPP and 2DBPP shows that our approach is more effective than existing approaches in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.