Abstract

Chemical cross-linking mass spectrometry (CXMS) has emerged as a powerful technology to analyze protein complexes. However, the progress of in vivo CXMS studies has been limited by cross-linking biocompatibility and data analysis. Herein, a glycosidic bond-based MS-cleavable cross-linker of trehalose disuccinimidyl ester (TDS) was designed and synthesized, which was fragmented in MS under CID/HCD to simplify the cross-linked peptides into conventional single peptides via selective cleavage between glycosidic and peptide bonds under individual MS collision energy. Consequently, the cross-linking identification accuracy and throughput were significantly enhanced, and the popular MS mode of stepped HCD was allowed. In addition, TDS showed proper cell-penetrating properties while being highly water-soluble, making it non-DMSO dependent during solubilization. Collectively, TDS provides a promising toolkit for CXMS characterization of living systems with high biocompatibility and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.