Abstract
Diurnal rainfall offshore propagation (OP) shapes the timing and intensity of coastal rainfall and thus impacts both nature and society. Previous OP studies have rarely compared various coasts, and a consensus regarding physical mechanisms has not been reached on a global scale. Here, we provide the global climatology of observed OP, which propagates across ~78% of all coasts and accounts for ~59% of the coastal precipitation. Generally, OP is facilitated by low latitudes, high moisture conditions and offshore background winds. OP at low latitudes in a high-moisture environment is mainly caused by inertia–gravity waves due to the land–sea thermal contrast, whereas OP at higher latitudes is significantly influenced by background winds under trapped land–sea breeze circulation conditions. Slower near-shore OP might be modulated by density currents. Our results provide a guide for global OP hotspots and suggest relative contributions of mechanisms from a statistical perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.