Abstract

A global design of an erbium-doped fiber and an open-loop erbium-doped fiber amplifier (EDFA) in a steady-state operation is discussed by applying genetic algorithms. Taking a signal gain and a bandwidth as objective functions, 7 parameters of the EDFA (erbium concentration, core radius, erbium-doped radius, refractive index difference, fiber length, pumping wavelength and signal power) are optimized by solving optical propagation equations, assuming a homogenous two-level active medium and a single-mode propagation. There is evidence to show that the 1480 nm pump utilized in usual EDFAs is not an optimal choice, which should be chosen around 1460 nm . The optimal core radius ranges 0.465 –0.548 μm on pumping power 50 –200 mW . Under different design objects and with different pumping powers, however, there are different optimal Er-doped concentrations, reflective index differences and fiber lengths. As a single fiber EDFA, 35 dB signal gain or 35 nm bandwidth is obtained with the 7 optimal parameters, 100 mW pumping power and 0.001 mW input signal power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.