Abstract

BackgroundPathogen transmission by mosquitos is known to be highly sensitive to mosquito bionomic parameters. Mosquito mark-release-recapture (MMRR) experiments are a standard method for estimating such parameters including dispersal, population size and density, survival, blood feeding frequency and blood meal host preferences.MethodsWe assembled a comprehensive database describing adult female MMRR experiments. Bibliographic searches were used to build a digital library of MMRR studies and selected data describing the reported outcomes were extracted.ResultsThe resulting database contained 774 unique adult female MMRR experiments involving 58 vector mosquito species from the three main genera of importance to human health: Aedes, Anopheles and Culex. Crude examination of these data revealed patterns associated with geography as well as mosquito genus, consistent with bionomics varying by species-specific life history and ecological context. Recapture success varied considerably and was significantly different amongst genera, with 8, 4 and 1% of adult females recaptured for Aedes, Anopheles and Culex species, respectively. A large proportion of experiments (59%) investigated dispersal and survival and many allowed disaggregation of the release and recapture data. Geographic coverage was limited to just 143 localities around the world.ConclusionsThis MMRR database is a substantial contribution to the compilation of global data that can be used to better inform basic research and public health interventions, to identify and fill knowledge gaps and to enrich theory and evidence-based ecological and epidemiological studies of mosquito vectors, pathogen transmission and disease prevention. The database revealed limited geographic coverage and a relative scarcity of information for vector species of substantial public health relevance. It represents, however, a wealth of entomological information not previously compiled and of particular interest for mosquito-borne pathogen transmission models.

Highlights

  • Pathogen transmission by mosquitos is known to be highly sensitive to mosquito bionomic parameters

  • This list was narrowed to 528 candidate references possibly containing Mosquito mark-release-recapture (MMRR) data for Aedes, Anopheles or Culex species according to their titles and abstracts and for which full-text copies were sought

  • The aggregated MMRR database presented here contains a wealth of information describing mosquito populations, their movements and demography

Read more

Summary

Introduction

Pathogen transmission by mosquitos is known to be highly sensitive to mosquito bionomic parameters. Major mosquito-borne infectious diseases of humans include malaria, dengue, filariasis, chikungunya fever, Rift Valley fever and the arboviral encephalitides, including Japanese encephalitis and West Nile neuroinvasive viral disease. Infections can cause high morbidity and mortality and are of great public health concern in endemic areas. Malaria parallels HIV/AIDS and is slightly behind diarrhoeal disease in terms of disability-adjusted life years lost [2]. The current estimated global burden of dengue is higher (390 million infections per year) than previously appreciated [3] and will likely increase as the range of Aedes expands [4,5] and as humans are increasingly concentrated in high risk urban areas [6]. Lymphatic filariasis often leads to permanent disability and its global burden ranks high amongst other neglected tropical diseases [2]. West Nile virus is the most widespread mosquitoborne neuropathogen and has dramatically expanded its geographic range across the Western Hemisphere after its introduction into North America in 1999 [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call