Abstract

Recycling plastic can abate the environmental pollution as well as CO2 emissions by saving the carbon-intensive feedstock input. The uncertain carbon price places significant effects on the establishment and operation of the whole supply chain. This study develops a green supply chain model combined with geographic information system (GIS) to account for carbon price uncertainty and evaluate its effects on the closed-loop supply chain (CLSC) of plastic recycling. A two-stage stochastic programming model is constructed, in which the stochastic variable, CO2 price is modelled as a geometric Brownian motion process. Six scenarios are designed with respect to price expectation and volatility. A case study is performed with the GIS information of the plastic supply chain in Zhejiang province, China. The results illustrate that triggering the establishment of reverse logistics requires a carbon price threshold significantly beyond the current level. Lower price volatility would facilitate the decision-making of investment into the reverse logistics. Mechanisms to alleviate the market variation shall be introduced. A sound market condition is desired to obtain the optimal balance that encourages the CLSC without creating extra pressure on the firms. The proposed modelling framework can be easily applied to other sectors with similar characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.